Teacable Machine 을 이용하여 모델을 javascript 에서 사용하는 형태로 export 하면 아래와 같은 example 코드를 확인 할 수 있다. 상기 코드는 webcam 의 canvas 의 영상을 전송 받아서 tensorflow 로 추론 하는 코드이다.
<div>Teachable Machine Image Model</div>
<button type="button" onclick="init()">Start</button>
<div id="webcam-container"></div>
<div id="label-container"></div>
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@1.3.1/dist/tf.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/@teachablemachine/image@0.8/dist/teachablemachine-image.min.js"></script>
<script type="text/javascript">
// More API functions here:
// https://github.com/googlecreativelab/teachablemachine-community/tree/master/libraries/image
// the link to your model provided by Teachable Machine export panel
const URL = "https://teachablemachine.withgoogle.com/models/VS7xWXrlQ/";
let model, webcam, labelContainer, maxPredictions;
// Load the image model and setup the webcam
async function init() {
const modelURL = URL + "model.json";
const metadataURL = URL + "metadata.json";
// load the model and metadata
// Refer to tmImage.loadFromFiles() in the API to support files from a file picker
// or files from your local hard drive
// Note: the pose library adds "tmImage" object to your window (window.tmImage)
model = await tmImage.load(modelURL, metadataURL);
maxPredictions = model.getTotalClasses();
// Convenience function to setup a webcam
const flip = true; // whether to flip the webcam
webcam = new tmImage.Webcam(200, 200, flip); // width, height, flip
await webcam.setup(); // request access to the webcam
await webcam.play();
window.requestAnimationFrame(loop);
// append elements to the DOM
document.getElementById("webcam-container").appendChild(webcam.canvas);
labelContainer = document.getElementById("label-container");
for (let i = 0; i < maxPredictions; i++) { // and class labels
labelContainer.appendChild(document.createElement("div"));
}
}
async function loop() {
webcam.update(); // update the webcam frame
await predict();
window.requestAnimationFrame(loop);
}
// run the webcam image through the image model
async function predict() {
// predict can take in an image, video or canvas html element
const prediction = await model.predict(webcam.canvas);
for (let i = 0; i < maxPredictions; i++) {
const classPrediction =
prediction[i].className + ": " + prediction[i].probability.toFixed(2);
labelContainer.childNodes[i].innerHTML = classPrediction;
}
}
</script>
모델을 로드하는 코드는 아래와 같다. Teachable Machine 으로 만든 모델을 로드하는 코드이다.
const URL = "https://teachablemachine.withgoogle.com/models/VS7xWXrlQ/";
let model, webcam, labelContainer, maxPredictions;
// Load the image model and setup the webcam
async function init() {
const modelURL = URL + "model.json";
const metadataURL = URL + "metadata.json";
// load the model and metadata
// Refer to tmImage.loadFromFiles() in the API to support files from a file picker
// or files from your local hard drive
// Note: the pose library adds "tmImage" object to your window (window.tmImage)
model = await tmImage.load(modelURL, metadataURL);
maxPredictions = model.getTotalClasses();
}
webcam 을 활성하는 코드이다. Dom Element 중 web-camcontainer 를 갖고 있는 div 에 webcam.canvas 를 자식 노드로 삽입한다. 또한 label-container div 에는 추론의 결과를 보여줄 div 만든다. maxPredictions 는 Teachable Machine 러닝을 통해 학습한 모델을 개수이다.
// Load the image model and setup the webcam
async function init() {
// Convenience function to setup a webcam
const flip = true; // whether to flip the webcam
webcam = new tmImage.Webcam(200, 200, flip); // width, height, flip
await webcam.setup(); // request access to the webcam
await webcam.play();
window.requestAnimationFrame(loop);
// append elements to the DOM
document.getElementById("webcam-container").appendChild(webcam.canvas);
labelContainer = document.getElementById("label-container");
for (let i = 0; i < maxPredictions; i++) { // and class labels
labelContainer.appendChild(document.createElement("div"));
}
}
PathToHeart 좌표로 하트 그리는 HTML 코드 (0) | 2024.02.21 |
---|---|
Window 크기에 맞게 HTML 5 Canvas 크기 조정하기 (0) | 2021.06.18 |
CORS - DOMException: Failed to execute 'texImage2D' on 'WebGL2RenderingContext': Tainted canvases may not be loaded. (0) | 2021.05.11 |
Canvas 객체를 이미지로 AWS S3에 업로드 하기 (0) | 2021.05.10 |
이미지 객체를 Canvas 에 그리기 (0) | 2021.05.04 |
댓글 영역